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Abstract JavaScript Object Notation or JSON is a

ubiquitous data exchange format on the Web. Ingesting

JSON documents can become a performance bottleneck

due to the sheer volume of data. We are thus motivated

to make JSON parsing as fast as possible.

Despite the maturity of the problem of JSON pars-

ing, we show that substantial speedups are possible.

We present the first standard-compliant JSON parser

to process gigabytes of data per second on a single

core, using commodity processors. We can use a quar-

ter or fewer instructions than a state-of-the-art refer-

ence parser like RapidJSON. Unlike other validating

parsers, our software (simdjson) makes extensive use of

Single Instruction, Multiple Data (SIMD) instructions.

To ensure reproducibility, simdjson is freely available as

open-source software under a liberal license.

1 Introduction

JavaScript Object Notation (JSON) is a text format

used to represent data [4]. It is commonly used for

browser-server communication on the Web. It is sup-

ported by many database systems such as MySQL, Post-

greSQL, IBM DB2, SQL Server, Oracle, and data-science

frameworks such as Pandas. Many document-oriented

databases are centered around JSON such as CouchDB

or RethinkDB.
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The JSON syntax can be viewed as a restricted form

of JavaScript, but it is used in many programming lan-

guages. JSON has four primitive types or atoms (string,

number, Boolean, null) that can be embedded within

composed types (arrays and objects). An object takes

the form of a series of key-value pairs between braces,

where keys are strings (e.g., {"name":"Jack","age":22}).
An array is a list of comma-separated values between

brackets (e.g., [1,"abc",null]). Composed types can

contain primitive types or arbitrarily deeply nested com-

posed types as values. See Fig. 1 for an example. The

JSON specification defines six structural characters (‘[’,

‘{’, ‘]’, ‘}’, ‘:’, ‘,’): they serve to delimit the locations

and structure of objects and arrays.

To access the data contained in a JSON document

from software, it is typical to transform the JSON text

into a tree-like logical representation, akin to the right-
hand-side of Fig. 1, an operation we call JSON parsing.

We refer to each value, object and array as a node in the

parsed tree. After parsing, the programmer can access

each node in turn and navigate to its siblings or its

children without need for complicated and error-prone

string parsing.

Parsing large JSON documents is a common task.

Palkar et al. state that big-data applications can spend

80–90% of their time parsing JSON documents [19].

Boncz et al. identified the acceleration of JSON parsing

as a topic of interest for speeding up database process-

ing [2].

JSON parsing implies error checking: arrays must

start and end with a bracket, objects must start and end

with a brace, objects must be made of comma-separated

pairs of values (separated by a colon) where all keys are

strings. Numbers must follow the specification and fit

within a valid range. Outside of string values, only a

few ASCII characters are allowed. Within string val-

ues, several characters (like ASCII line endings) must

ar
X

iv
:1

90
2.

08
31

8v
2 

 [
cs

.D
B

] 
 2

5 
Fe

b 
20

19



{
"Width": 800,
"Height": 600,
"Title": "View from

my room",
"Url": "http ://ex.com

/img.png",
"Private": false ,
"Thumbnail": {

"Url": "http ://ex.
com/th.png",

"Height": 125,
"Width": 100

},
"array": [

116,
943,
234,

],
"Owner": null

}

root

”Width”: 800

”Height”: 600

”Title”: ”View from my room”

”Url”: ”http://ex.com/img.png”

”Private”: false

”Thumbnail”

”Url”: ”http://ex.com/th.png”

”Height”: 125

”Width”: 100

”array”

116

943

234

”Owner”: null

Fig. 1: JSON example

be escaped. The JSON specification requires that docu-

ments use a unicode character encoding (UTF-8, UTF-

16, or UTF-32), with UTF-8 being the default. Thus

we must validate the character encoding of all strings.

JSON parsing is therefore more onerous than merely

locating nodes. Our contention is that a parser that

accepts erroneous JSON is both dangerous—in that it

will silently accept malformed JSON whether this has

been generated accidentally or maliciously—and poorly

specified—it is difficult to anticipate or widely agree on

what the semantics of malformed JSON files should be.

To accelerate processing, we should use our proces-

sors as efficiently as possible. Commodity processors

(Intel, AMD, ARM, POWER) support single-instruction-

multiple-data (SIMD) instructions. These SIMD instruc-

tions operate on several words at once unlike regular in-

structions. For example, starting with the Haswell mi-

croarchitecture (2013), Intel and AMD processors sup-

port the AVX2 instruction set and 256-bit vector reg-

isters. Hence, on recent x64 processors, we can com-

pare two strings of 32 characters in a single instruction.

It is thus straightforward to use SIMD instructions to

locate significant characters (e.g., ‘"’, ‘=’) using few in-

structions. We refer to the application of SIMD instruc-

tions as vectorization. Vectorized software tends to use

fewer instructions than conventional software. Every-

thing else being equal, code that generates fewer in-

structions is faster.

A closely related concept to vectorization is branch-

less processing: whenever the processor must choose be-

tween two code paths (a branch), there is a risk of in-

curring several cycles of penalty due to a mispredicted

branch on current pipelined processors. In our experi-

ence, SIMD instructions are most likely to be beneficial

in a branchless setting.

To our knowledge, publicly available JSON validat-

ing parsers make little use of SIMD instructions. Due

to its complexity, the full JSON parsing problem may

not appear immediately amenable to vectorization.

One of our core results is that SIMD instructions

combined with minimal branching can lead to new speed

records for JSON parsing—often processing gigabytes

of data per second on a single core. We present sev-

eral specific performance-oriented strategies that are of

general interest.

– We detect quoted strings, using solely arithmetic

and logical operations and a fixed number of in-

structions per input bytes, while omitting escaped

quotes (§ 3.1.1).

– We differentiate between sets of code-point values

using vectorized classification thus avoiding the bur-
den of doing N comparisons to recognize that a

value is part of a set of size N (§ 3.1.2).

– We validate UTF-8 strings using solely SIMD in-

structions (§ 3.1.5).

2 Related Work

A common strategy to accelerate JSON parsing in the

literature is to parse selectively. Alagiannis et al. [1]

presented NoDB, an approach where one queries the

JSON data without first loading it in the database. It

relies in part on selective parsing of the input. Bonetta

and Brantner use speculative just-in-time (JIT) com-

pilation and selective data access to speed up JSON

processing [3]. They find repeated constant structures

and generate code targeting these structures.

Li et al. present their fast parser, Mison which can

jump directly to a queried field without parsing inter-

mediate content [12]. Mison uses SIMD instructions to
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quickly identify some structural characters but other-

wise works by processing bit-vectors in general purpose

registers with branch-heavy loops. Mison does not at-

tempt to validate documents; it assumes that docu-

ments are pure ASCII as opposed to unicode (UTF-8).

In some instances, Mison can exceed a parsing speed

of 2 GB/s on a 3.5 GHz Intel processor, which is 4–6

times faster than a conventional validating parser like

RapidJSON.

Pavlopoulou et al. [20] propose a parallelized JSON

processor that supports advanced queries and rewrite

rules. Sparser filters quickly an unprocessed document

to find mostly just the relevant information [19].

2.1 XML Parsing

Before JSON, there has been a lot of similar work done

on parsing XML. Noga et al. [18] report that when fewer

than 80% of the values need to be parsed, it is more

economical to parse just the needed values. Marian et

al. [14] propose to “project” XML documents, down to

a smaller document before executing queries. Green et

al. [9] show that we can parse XML quickly using a De-

terministic Finite Automaton (DFA) where the states

are computed lazily, during parsing. Farfán et al. [8]

go further and skip entire sections of the XML docu-

ment, using internal physical pointers. Takase et al. [22]

accelerate XML parsing by avoiding syntactic analysis

when subsets of text have been previously encountered.

Kostoulas et al. designed a fast validating XML parser

called Screamer: it achieves higher speed by reducing

the number of distinct processing steps [10]. Cameron

et al. show that we can parse XML faster using SIMD

instructions [5], in their parser (called Parabix). Zhang

et al. [23] show how we can parse XML documents in

parallel by first indexing the document, and then sepa-

rately parsing partitions of the document.

Mytkowicz et al. [16] show how to vectorize finite-

state machines using SIMD instructions. They demon-

strate good results with HTML tokenization, being more

than twice as fast as a baseline.

3 Parser Architecture and Implementation

In our experience, most JSON parsers proceed by top-

down recursive descent [6] that makes a single pass

through the input bytes, doing character-by-character

decoding. We adopt a different strategy, using two dis-

tinct passes. We briefly describe the two stages before

covering them in detail in subsequent sections.

1. In stage 1, we validate the character encoding and

identify the starting location of all JSON nodes (e.g.,

numbers, strings, null, true, false, arrays, objects).

We also need the location of all structural characters

(‘[’, ‘{’, ‘]’, ‘}’, ‘:’, ‘,’) defined in the JSON spec-

ification [4]. These locations are written as integer

indexes in a separate array.

During this stage, it is necessary to distinguish the

characters that are between quotes, and thus in-

side a string value, from other characters. For exam-

ple, the JSON document "[1,2]" is a single string

despite the appearance of brackets. That is, these

brackets should not be identified as relevant struc-

tural characters. Because quotes can be escaped (e.g.,

‘\"’), it is necessary to identify backslash characters

as well. Outside of strings, only four specific white-

space characters are allowed (space, tab, line feed,

carriage return). Any other white-space character

needs to be identified.

The first stage involves either SIMD processing over

bytes or the manipulation of bitsets (arrays of bits)

that have one bit corresponding to one byte of in-

put. As such, it can be inefficient for some inputs—

we can observe dozens of operations taking place

to discover that there are in fact no odd-numbered

sequences of backslashes or quotes in a given block

of input. However, this inefficiency on such inputs is

balanced by the fact that it costs no more to run this

code over complex structured input, and the alter-

natives would generally involve running a number

of unpredictable branches.

2. In stage 2, we process all of the nodes and structural

characters. We distinguish the nodes based on their

starting character. When a quote (‘"’) is encoun-

tered, we parse a string; when a digit or a hyphen

is found, we parse a number; when the letters ‘t’,

‘f’, ‘n’ are found, we look for the values true, false

and null.

Strings in JSON cannot contain some characters un-

escaped, i.e., ASCII characters with code points less

than 0x20, and they may contain many sorts of es-

caped characters. It is thus necessary to normalize

the strings: convert them to valid UTF-8 sequences.

Encountered numbers must be converted to either

integers or floating-point values. They can take many

forms (e.g., 12, 3.1416, 1.2e+1). However, we must

check many rules while parsing numbers. For exam-

ple, the following strings are invalid numbers: 012,

1E+, and .1. We also check for overflows: we refuse

to parse integers that do not fit in the 64-bit range:

[−263, 263).

We validate objects as sequences of strings, colons

(‘:’) and values; we validate arrays as sequences of

values separated by commas (‘,’). We ensure that

all objects started with an open brace (‘{’) are ter-
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minated with a closing brace (‘}’). We ensure that

all arrays started with an open square bracket (‘[’)

are terminated with a closing square bracket ( ‘]’).

The result is written in document order on a tape:

an array of 64-bit words. The tape contains a word

for each node value (string, number, true, false, null)

and a word at the beginning and at the end of each

object or array. To ensure fast navigation, the words

on the tape corresponding to braces or brackets are

annotated so that we can go from the word at the

start of an object or array to the word at the end of

the array without reading the content of the array

or object.

We have a secondary array where normalized string

values are stored. Other parsers like RapidJSON or

sajson may store the normalized strings directly in

the input bytes.

At the end of the two stages, we report whether the

JSON document is valid [4]. All strings are normalized

and all numbers have been parsed and validated.

Our two-stage design is motivated by performance

concerns. Stage 1 operates directly on the input bytes,

processing the data in batches of 64 bytes. In this man-

ner, we can make full use of the SIMD instructions that

are key to our good performance. Except for unicode

validation, we deliberately delay number and string val-

idation to stage 2, as these tasks are comparatively

expensive and difficult to perform unconditionally and

cheaply over our entire input.

3.1 Stage 1: Structural and Pseudo-Structural

Elements

The first stage of our processing must identify key points

in our input: the structural characters of JSON (brace,

bracket, colon and comma), the start and end of strings

as delineated by double quote characters, other JSON

atoms that are not distinguishable by simple charac-

ters ( true, false, null and numbers), as well as dis-

covering these characters and atoms in the presence of

both quoting conventions and backslash escaping con-

ventions.

In JSON, a first pass over the input can efficiently

discover the significant characters that delineate syntac-

tic elements (objects and arrays). Unfortunately, these

characters may also appear between quotes, so we need

to identify quotes. It is also necessary to identify the

backslash character because JSON allows escaped char-

acters: ‘\”’, ‘\\’, ‘\/’, ‘\b’, ‘\f’, ‘\n’, ‘\r’, ‘\t’, as well

as escaped unicode characters (e.g. \uDD1E).

A point of reference is Mison [12], a fast parser in

C++. Mison uses vector instructions to identify the

colons, braces, quotes and backslashes. The detected

quotes and backslashes are used to filter out the in-

significant colons and braces. We follow the broad out-

line of the construction of a structural index as set forth

in Mison; first, the discovery of odd-length sequences

of backslash characters—which will cause quote char-

acters immediately following to be escaped and not

serve their quoting role but instead be literal charac-

ters, second, the discovery of quote pairs—which cause

structural characters within the quote pairs to also be

merely literal characters and have no function as struc-

tural characters, then finally the discovery of structural

characters not contained within the quote pairs. We

depart from the Mison paper in method and overall de-

sign. The Mison authors loop over the results of their

initial SIMD identification of characters, while we pro-

pose branchless sequences to accomplish similar tasks.

For example, to locate escaped quote characters, they

iterate over the repeated quote characters. Their Al-

gorithm 1 identifies the location of the quoted charac-

ters by iterating through the unescaped quote charac-

ters. We have no such loops in our stage 1: it is es-

sentially branchless, with a fixed cost per input bytes

(except for character-encoding validation, § 3.1.5). Fur-

thermore, Mison’s processing is more limited by design

as it does not identify the locations of the atoms, it does

not process the white-space characters and it does not

validate the character encoding.

3.1.1 Identification of the quoted substrings

Identifying escaped quotes is less trivial than it appears.

While it is easy to recognize that the string “\"” is made

of an escaped quote since a quote character immediately

preceded by a backslash, if a quote is preceded by an

even number of backslashes (e.g., “\\"”), then it is not

escaped since \\ is an escaped backslash. We distinguish

sequences of backslash characters starting at an odd

index location from sequences starting at even index

location. A sequence of characters that starts at an odd

(resp. even) index location and ends at an odd (resp.

even) index location must have an even length, and it is

therefore a sequence of escaped backslashes. Otherwise,

the sequence contains an odd number of backslashes

and any quote character following it must be considered

escaped. We provide the code sequence with an example

in Fig. 2 where two quote characters are escaped.1

1 We simplify this sequence for clarity. Our results are af-
fected by the previous iteration over the preceding 64 byte
input if any. Suppose a single backslash ended the previous
64 byte input; this alters the results of the previous algorithm.
We similarly elide the full details of the adjustments for pre-
vious loop state in our presentation of subsequent algorithms.
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{ "\\\" Nam[{": [ 116,"\\\\" , 234, "true", false ], "t":"\\\"" }: input data
___111________________1111_______________________________111____: B
1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_: E (constant)
_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1: O (constant)
// identify ’starts ’ - backslashes characters not preceded by backslashes
___1__________________1__________________________________1______: S = B &~(B << 1)

// detect end of a odd -length sequence of backslashes starting on an even offset
// detail: ES gets all ’starts ’ that begin on even offsets
______________________1_________________________________________: ES = S & E
// add B to ES , yielding carries on backslash sequences with even starts
___111____________________1______________________________111____: EC = B + ES
// filter out the backslashes from the previous addition , getting carries only
__________________________1_____________________________________: ECE = EC & ~B
// select only the end of sequences ending on an odd offset
________________________________________________________________: OD1 = ECE & ~E

// detect end of a odd -length sequence of backslashes starting on an odd offset
// details are as per the above sequence
___1_____________________________________________________1______: OS = S & O
______1_______________1111__________________________________1___: OC = B + OS
______1_____________________________________________________1___: OCE = OC & ~B
______1_____________________________________________________1___: OD2 = OCE & E

// merge results , yielding ends of all odd -length sequence of backslashes
______1_____________________________________________________1___: OD = OD1 | OD2

Fig. 2: Branchless code sequence to identify escaped quote characters (with example). We use the convention of

the C language: ‘&’ denotes the bitwise AND, ‘|’ the bitwise OR, ‘<<’ is a left shift, ‘~’ is a bitwise negation.

With the backslash and quote characters identified,

we can locate the unescaped quote characters efficiently,

with a shift followed by a bitwise ANDNOT, eliminat-

ing the escaped quote characters. However, we are in-

terested in finding the location between quotes (the

strings), so we can find the actual structural charac-

ters. The desired bit pattern would be 1 if there are an

odd-numbered number of unescaped quotes at or be-

fore our location and zero otherwise; this is the parallel

prefix sum of the XOR operation over our bit vector

representing unescaped quotes. This prefix sum can be

implemented as one instruction by using the carry-less

multiplication [11] (implemented with the pclmulqdq

instruction) of our unescaped quote bit vector by an-

other 64-bit word made entirely of ones, yielding the

desired scope (the interior of the quoted region plus

the initial quote character). E.g., if we compute the

carry-less multiplication of 0b100010000 with a word

containing only ones, we get 0b011110000.2

3.1.2 Vectorized Classification

Mison does one SIMD comparison per character (‘:’,

‘\’, ‘:’, ‘"’, ‘{’, ‘}’). We proceed similarly to identify the

quotes and the backslash characters. However, there are

six structural characters, and, for purposes of further

analysis, we also need to discover the four permissible

white-space characters. Doing ten comparisons and ac-

companying bitwise OR operations would be expensive.

Instead of a comparison, we use the AVX2 vpshufb in-

struction to acts as a vectorized table lookup to do a

2 We use the convention that 0b100010000 is the binary
value with the fifth and ninth least significant bits set to 1.

vectorized classification [15]. The vpshufb instruction

uses the least significant 4 bits of each byte (low nib-

ble) as an index into a 16-byte table. Other processor

architectures (ARM and POWER) have similar SIMD

instructions.

By doing one lookup, followed by a 4-bit right shift

and a second lookup (using a different table), we can

separate the characters into one of two categories: struc-

tural characters and white-space characters. The first

lookup maps the low nibbles (least significant 4 bits) of

each byte to a byte value; the second lookup maps the

high nibble (most significant 4 bits) of each byte to a

byte value. The two byte values are combined with a

bitwise AND.

To see how this can be used to identify sets of char-

acters, suppose that we want to identify the byte val-

ues 0x9, 0xa and 0xd. The low nibbles are 9, a and d,

and the high nibbles are all zeroes. In the first 16-byte

lookup table, we set the fourth least significant bit to

1 for the values corresponding to indexes 9, a and d,

and only for these three values. In the second 16-byte

lookup table, set the fourth least significant bit to 1 for

the value at index 0, and only for this value. Then we

have that whenever the input values 0x9, 0xa and 0xd

are encountered, and only for these values, the fourth

least significant bit of the result of the bitwise AND is

1. Hence, using two vpshufb instructions, a shift and a

few bitwise logical operations, we can identify a set of

characters. If we could only identify one set of charac-

ters, this approach would not be necessarily advanta-

geous, but we can identify many different sets with the

same two vpshufb instructions. We can repeat the same
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{ "\\\" Nam[{": [ 116,"\\\\" , 234, "true", false ], "t":"\\\"" }: input data
__1___1_____1________1____1________1____1___________1_1_1___11__: Q
______1_____________________________________________________1___: OD
__1_________1________1____1________1____1___________1_1_1____1__: Q &= ~OD
__1111111111_________11111_________11111____________11__11111___: CLMUL(Q,~0)

Fig. 3: Branchless code sequence to identify quoted range excluding the final quote character. CLMUL refers to

the carry-less multiplication. We assume that OD is computed using the code sequence from Fig. 2.

strategy with new sets of input values, always making

them match a given bit index (the fourth in our exam-

ple). To avoid misclassifications, we need to ensure that

each set of input values corresponding to a bit index is

uniquely characterized by a set of low nibbles and high

nibbles. The set {0x9, 0xa, 0xd} works since it is the

set of all values with low nibbles 9, a, d, and high nibble

0. The set {0x5b,0x5d, 0x7b, 0x7d} also works since it

is the set of all values with the low nibbles b and d and

the high nibbles 5 and 7. The set {0x21, 0x33} would

not work since 0x31 and 0x23 also share the same high

nibbles and low nibbles: we would need to break the set

{0x21, 0x33} into two subsets ({0x21}, {0x33}). We can

support as many sets as we have bit indexes (8).

We break the set of code-point values corresponding

to structural characters into three sets: {0x2c}, {0x3a},
{0x5b,0x5d, 0x7b, 0x7d}. We match them to the first

three bit indexes. We break the set of code-point values

corresponding to white-space characters into two sets

{0x9, 0xa, 0xd}, and {0x20}. We match them to the

fourth and fifth bit indexes. These sets are all uniquely

characterized by their low and high nibbles. Our solu-

tion is not unique: e.g., we could have broken {0x5b,0x5d,

0x7b, 0x7d} into two sets ( {0x5b,0x5d}, {0x7b, 0x7d}).
See Table 1. The table for the low nibbles is 16, 0,

0, 0, 0, 0, 0, 0, 0, 8, 10, 4, 1, 12, 0, 0; and the table

for the high nibbles is 8, 0, 17, 2, 0, 4, 0, 4, 0, 0, 0, 0,

0, 0, 0, 0. Applying our algorithm, we get the following

results:

– For the comma (code-point value 0x2c), we get 1,

as the bitwise AND between 17 and 1.

– For the colon (code-point value 0x3a), we get 0b10

(2 in binary).

– For the other structural characters (code-point val-

ues 0x5b,0x5d, 0x7b, 0x7d), we get 0b100 (4 in bi-

nary).

– For the first three white-space characters (with code-

point values 0x9, 0xa and 0xd), we get the value

0b1000 (8 in binary).

– For the space character (code-point value 0x20), we

get 0b10000 (16 in binary).

– All other character inputs will yield zero.

We can recognize the structural characters by comput-

ing a bitwise OR with 0xb111 and the white-space char-

acters with a bitwise OR with 0b11000. That is, with

only two vpshufb instructions and a few logical instruc-

tions, we can classify all code-point values into one of

three sets: structural (comma, colon, braces, brackets),

ASCII white-space (‘\r’, ‘\n’, ‘\t’, ‘ ’) and others. No

branching is required.

3.1.3 Identification of White-Space and

Pseudo-Structural Characters

We also make use of our ability to quickly detect white

space in this early stage. We can use another bitset-

based transformation to discover locations in our data

that follow a structural character or quote followed by

zero or more characters of white space; excluding loca-

tions within strings, and the structural characters we

have already discovered, these locations are the only

place that we can expect to see the starts of the JSON

atoms (such as numbers whether or not starting with

a minus sign, null, true, and false). These locations

are thus treated as structural and we term them pseudo-

structural characters. Formally, we define pseudo-structural

characters as non-white-space characters that are

1. outside quotes and

2. have a predecessor that is either a white-space char-

acter or a structural character.

We use a feature of JSON: the legal atoms can all be

distinguished from each other by their first character:

‘t’ for true, ‘f’ for false, ‘n’ for null and the character

class [0-9-] for numerical values.

As a side-effect, identifying pseudo-structural char-

acters helps validate documents. For example, only some

ASCII white-space characters are allowed unescaped

outside a quoted range in JSON. An isolated disal-

lowed character would be flagged as a pseudo-structural

character and subsequently rejected in stage 2. Further-

more, dangling atoms are automatically identified (as

the a in [12 a]) and will be similarly rejected. The key

insight is that stage 1 need not discover whether such

out-of-place characters are legal JSON—it only needs

to expose them in the stream of structural and pseudo-

structural characters that will be parsed in stage 2.

Fig. 4 illustrates a final sequence in stage 1 where

given the (unescaped) quotes and the quoted ranges, as
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low
nibble 0 · · · 9 a b c d e f

high
nibble 16 · · · 8 10 4 1 12 0 0

0 8 · · · 8 8 8
1 0 · · ·
2 17 16 · · · 1
3 2 · · · 2
4 0 · · ·
5 4 · · · 4 4
6 0 · · ·
7 4 · · · 4 4

code points desired value

0x2c 1

0x3a 2

0x5b,0x5d, 0x7b, 0x7d 4

0x09, 0x0a, 0x0d 8

0x20 16

others 0

Table 1: Table describing the vectorized classification of the code points. The first column and first row are indexes

corresponding to the high and low nibbles. The second column and the second row are the looked up table values.

The main table values are the bitwise AND result of the two table values (e.g., 10 AND 8 is 8). The omitted values

are zeroes. On the right, we give the desired classification.

well as the structural and white-space characters, we

identify the pseudo-structural characters.

3.1.4 Index Extraction

During stage 1, we process blocks of 64 input bytes. The

end product is a 64-bit bitset with the bits correspond-

ing to a structural or pseudo-structural characters set

to 1. Our structural and pseudo-structural characters

are relatively rare and can sometimes, but not always,

be infrequent. E.g., we can construct plausible JSON in-

puts that have such a character once ever 40 characters

or once every 4 characters. As such, continuing to pro-

cess the structural characters as bitsets involves manip-

ulating data structures that are unpredictably spaced.

We choose to transform these bitsets into indexes. That

is, we seek a list of the locations of the 1-bits. Once we

are done with the extraction of the indexes, we can dis-

card the bitset. In contrast, Mison does not have such

an extraction step and iterates directly over the 1-bits.

Our implementation involves a transformation of

bitsets to indexes by use of the count trailing zeroes

operation (via the tzcnt instruction) and an operation

to clear the lowest set bit (via the blsr instruction).

This strategy introduces an unpredictable branch; un-

less there is a regular pattern in our bitsets, we would

expect to have at least one branch miss for each word.

However, we employ a technique whereby we extract

8 indexes from our bitset unconditionally, then ignore

any indexes that were extracted excessively by means

of overwriting those indexes with the next iteration of

the index extraction loop. See Fig. 5. This means that

as long as the frequency of our set bits is below 8 bits

out of 64 we expect few unpredictable branches. The

choice of the number 8 is a heuristic based on our ex-

perience with JSON documents; a larger unconditional

extraction procedure would be more expensive due to

having to use more operations, but even less likely to

cause a branch miss as a wider range of bit densities

could be handled by extracting, say, 8 indexes from our

bitset.

3.1.5 Character-Encoding Validation

In our experience, JSON documents are served using

the unicode format UTF-8: we could not find a single

instance of JSON document published using another

character encoding. Indeed, the JSON specification in-

dicates that many implementation do not support en-

codings other than UTF-8. Parsers like Mison assume

that the character encoding is ASCII [12]. Though it is

reasonable, a safer assumption is that unicode (UTF-

8) is used. Not all sequences of bytes are valid UTF-8

and thus a validating parser needs to ensure that the

character encoding is correct. We assume that the in-

coming data is meant to follow UTF-8, and that the

parser should produce UTF-8 strings.

UTF-8 is an ASCII superset. The ASCII characters

can be represented using a single byte, as a numerical

value called code point between 0 and 127 inclusively.

That is, ASCII code points are an 8-bit integer with

the most significant bit set to zero. UTF-8 extends these

128 code points to a total of 1,114,112 code points. Non-

ASCII code points are represented using from two to

four bytes, each with the most significant bit set to one.

Non-ASCII code points cannot contain ASCII charac-

ters: we can therefore remove from an UTF-8 stream of

bytes any number of ASCII characters without affecting

its validation.

Outside of strings in JSON, all characters must be

ASCII. Only the strings require potentially expensive

validation. However, there may be many small strings in

a document, so it is unclear whether vectorized unicode

7



{ "\\\" Nam[{": [ 116,"\\\\" , 234, "true", false ], "t":"\\\"" }: input data
__1_________1________1____1________1____1___________1_1_1____1__: Q
__1111111111_________11111_________11111____________11__11111___: R
1_________11_1_1____1_______1____1_______1_______11____1_______1: S
_1____________1_1__________1_1____1_______1_____1__1__________1_: W
// eliminate quoted regions from our structural characters
1____________1_1____1_______1____1_______1_______11____1_______1: S = S&~R
// restore ending quotes to our structural characters
// (for purposes of building pseudo -structural characters)
1_1_________11_1____11____1_1____1_1____11_______11_1_111____1_1: S = S|Q
// begin to calculate pseudo -structural characters
// initially; pseudo -structural characters are structural or white space
111 _________11111___11____1111___111____111_____11111_111____111: P = S|W
// now move our mask for candidate pseudo -structural characters forward by one
1111 _________11111___11____1111___111____111_____11111_111____11: P = P<<1
// eliminate white -space and quoted characters from our candidates
1____________1_1_1__________1_1__________1_1_____11____1_______1: P &= ~W&~R
// merge pseudo -structural characters into structural character mask
1_1_________11_1_1__11____1_1_1__1_1____11_1_____11_1_111____1_1: S = S|P
// eliminate ending quotes from our final structural characters
1_1__________1_1_1__11______1_1__1_1_____1_1_____11_1__11______1: S&~(Q&~R)

Fig. 4: Branchless code sequence to identify the structural and pseudo-structural characters. The quotes Q and

the quoted range R are computed using the code sequence from Fig. 3. The structural (S) and white-space (W)

characters are identified vectorized classification.

// we decode the set bits from ’s’

// to array ’b’

uint64_t s = ...

uint32_t * b = ...

// net line => popcnt instruction

uint32_t cnt = popcount(s);

uint32_t next_base = b + cnt;

while (s) {

// next line => tzcnt instruction

*b++ = idx + trailingzeroes(s);

// next line => blsr instruction

s = s & (s - 1);

*b++ = idx + trailingzeroes(s);

s = s & (s - 1);

*b++ = idx + trailingzeroes(s);

s = s & (s - 1);

*b++ = idx + trailingzeroes(s);

s = s & (s - 1);

*b++ = idx + trailingzeroes(s);

s = s & (s - 1);

*b++ = idx + trailingzeroes(s);

s = s & (s - 1);

*b++ = idx + trailingzeroes(s);

s = s & (s - 1);

*b++ = idx + trailingzeroes(s);

s = s & (s - 1);

}

b = new_base;

Fig. 5: Code sequence to extract set bits out of a bitset

validation would be beneficial at the individual string

level. Thus we validate the input bytes as a whole.

We first test if a block of 64 bytes is made entirely

of ASCII characters. It suffices to verify that the most

significant bit of all bytes is zero. This optimization

might trigger some unpredictable branches, but given

how frequently JSON documents might be almost en-

tirely composed of ASCII characters, it is a necessary

risk.

If there are non-ASCII characters, we apply a vec-

torized UTF-8 validation algorithm. We need to check

that sequences of bytes are made of valid UTF-8 code

points (see Tables 2). It involves several steps, but each

one is efficient. We work exclusively with SIMD instruc-

tions.

– We need to verify that all byte values are no larger

than 0xF4 (or 244): we can achieve this check with

an 8-bit saturated subtraction with 0xF4. The result

of the subtraction is zero if and only if the value is

no larger than 0xF4.

– When the byte value 0xED is found, the next byte

must be no larger than 0x9F; when the byte value

0xF4 is found, the next byte must be no larger than

0x8F. We can check these conditions with vectorized

byte comparisons and byte shifts.

– The byte values 0xC0 and 0xC1 are forbidden. When

the byte value is 0xE0, the next byte value is larger

than 0xA0. When the byte value is 0xF0, the next

byte value is at least 0x90.

– When a byte value is outside the range of ASCII val-

ues, it belongs to one out of four classes, depending

on the value of its high nibble:

– If the high nibble is 8, 9, a or b (in hexadecimal)

then the byte is the second, third of fourth byte

in a code point.

– If the high nibble is c or d then the byte must

be the first of a sequence of two bytes forming a

code point.

– If the high nibble is e then the byte is the first

out of a code point made of three bytes.
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– Finally, if the high nibble is f, then the byte is

first in a sequence of four bytes.

We use the vpshufb instruction to quickly map bytes

to one of these categories using values 0, 2, 3, and 4.

We map ASCII characters to the value 1. If the value

4 is found (corresponding to a nibble value of f), it

should be followed by three values 0. Given such a

vector of integers, we can check that it matches a

valid sequence of code points in the following man-

ner. Shift values by 1 and subtract 1 using saturated

subtraction, add the result to the original vector.

Repeat the same process with a factor of two: shift

values by 2 and subtract 2, add the result to the

original vector. Starting with the sequence 4 0 0 0

2 0 1 1 3 0 0, you first get 4 3 0 0 2 1 1 1 3 2 0 and

then 4 3 2 1 2 1 1 1 3 2 1. If the sequence came from

valid UTF-8, all final values should be greater than

zero, and be no larger than the original vector.

All these checks are done using SIMD registers solely,

without branching. At the beginning of the processing,

we initialize an error variable (as a 32-byte vector) with

zeroes. We compute in-place the bitwise OR of the re-

sult of each check with our error variable. Should any

check fail, the error variable will become non-zero. We

only check at the end of the processing (once) that the

variable is zero. If a diagnosis is required to determine

where the error occurs, we can do a second pass over

the input.

3.2 Stage 2: Building the Tape

In the final stage, we iterate through the indexes found

in the first stage. To handle objects and arrays that can

be nested, we use a goto-based state machine. Our state

is recorded as a stack indicating whether we are in an

array or an object, we append our new state to the stack

whenever we encounter an embedded array or object.

When the embedded object or array terminates, we use

the stored state from the stack and a goto command to

resume the parsing from the appropriate state in the

containing scope. Values such as true, false, null are

handled as simple string comparisons. We parse num-

bers and strings using dedicated functions. See Fig. 6

for an example of the resulting tape. Without much

effort, we could support streaming processing without

materializing JSON documents objects as in-memory

tapes [13].

3.2.1 Number Parsing

It is difficult to do number parsing without proceeding

in a standard character-by-character manner. Thus we

0 : r // pointing to 38
1 : { // pointing to next tape

location 38
2 : string "Image"
3 : { // pointing to next tape

location 37
4 : string "Width"
5 : integer 800
7 : string "Height"
8 : integer 600
10 : string "Title"
11 : string "View from 15th Floor"
12 : string "Thumbnail"
13 : { // pointing to next tape

location 23
14 : string "Url"
15 : string "http ://www.example.com/

image /481989943"
16 : string "Height"
17 : integer 125
19 : string "Width"
20 : integer 100
22 : } // pointing to previous tape

location 13
23 : string "Animated"
24 : false
25 : string "IDs"
26 : [ // pointing to next tape

location 36
27 : integer 116
29 : integer 943
31 : integer 234
33 : integer 38793
35 : ] // pointing to previous tape

location 26
36 : } // pointing to previous tape

location 3
37 : } // pointing to previous tape

location 1
38 : r // pointing to 0 (start root)

Fig. 6: JSON tape corresponding to the example in

Fig. 1

proceed in such a manner as do most parsers. However,

we found it useful to test for the common case where

there are at least eight digits as part of the fractional

portion of the number. Given the eight characters inter-

preted as a 64-bit integer val, we can check whether it

is made of eight digits with an inexpensive comparison:

( ( ( va l & 0xF0F0F0F0F0F0F0F0)

| ( ( ( va l + 0 x0606060606060606 )

& 0xF0F0F0F0F0F0F0F0) >> 4) )

== 0 x3333333333333333 ) .

When this check is successful, we can invoke a fast vec-

torized function to compute the equivalent integer value

(see Fig. 7).

3.2.2 String Validation and Normalization

When encountering a quote character, we always read

32 bytes in a vector register, then look for the quote and

the escape characters. If an escape character is found

before the first quote character, we use a conventional

code path to process the escaped character, otherwise

we just write the 32-byte register to our string buffer.
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code points 1st byte 2nd byte 3rd byte 4th byte

0x000000...0x00007F 00. . . 7F
0x000080...0x0007FF C2. . . DF 80. . . BF
0x000800...0x000FFF E0 A0. . . BF 80. . . BF
0x001000...0x00CFFF E1. . . EC 80. . . BF 80. . . BF
0x00D000...0x00D7FF ED 80. . . 9F 80. . . BF
0x00E000...0x00FFFF EE. . . EF 80. . . BF 80. . . BF
0x010000...0x03FFFF F0 90. . . BF 80. . . BF 80. . . BF
0x040000...0x0FFFFF F1. . . F3 80. . . BF 80. . . BF 80. . . BF
0x100000...0x10FFFF F4 80. . . 8F 80. . . BF 80. . . BF

Table 2: UTF-8 code-points and their representation into sequences of up to four bytes.

uint32_t parse_eight_digits_unrolled(char *

chars) {

__m128i ascii0 = _mm_set1_epi8(’0’);

__m128i mul_1_10 =

_mm_setr_epi8 (10, 1, 10, 1, 10, 1, 10,

1, 10, 1, 10, 1, 10, 1, 10, 1);

__m128i mul_1_100 = _mm_setr_epi16 (100, 1,

100, 1, 100, 1, 100, 1);

__m128i mul_1_10000 =

_mm_setr_epi16 (10000 , 1, 10000, 1,

10000, 1, 10000 , 1);

__m128i in = _mm_sub_epi8(_mm_loadu_si128

(( __m128i *) chars), ascii0);

__m128i t1 = _mm_maddubs_epi16(in,

mul_1_10);

__m128i t2 = _mm_madd_epi16(t1, mul_1_100)

;

__m128i t3 = _mm_packus_epi32(t2, t2);

__m128i t4 = _mm_madd_epi16(t3,

mul_1_10000);

return _mm_cvtsi128_si32(t4);

}

Fig. 7: Code sequence using Intel intrinsics to convert eight digits to their integer value.

Our string buffer is made of null-terminated strings, so

we add a null character where the terminating quote

would be. Strictly speaking the JSON specification al-

lows string characters containing null characters, but

we do not know of any application that would require

null characters inside strings. As part of the string val-

idation, we must check that no code-point value less

than 0x20 is found: we use vectorized comparison.

4 Experiments

We validate our results through a set of reproducible ex-

periments over varied data.3 In § 4.3, we report that the

running time during parsing is split evenly between our

two stages. In § 4.4, we show that we use half as many

instructions during parsing as our best competitor. In

3 Scripts and code is available online: https://github.com/
lemire/simdjson.

§ 4.5, we show that this reduced instruction count trans-

lates into a comparable runtime advantage.

4.1 Hardware and Software

Most recent Intel processors are based on the Skylake

microarchitecture. We also include a computer with the

more recent Cannonlake microarchitecture in our tests.

We summarize the characteristics of our hardware plat-

forms in Table 3.

Our software was written using C++17. We tested

it under several recent compilers (LLVM’s clang, GNU

GCC, Microsoft Visual Studio 2017). For our testing,

we use GNU GCC 7 to compile all software under Linux

using the -O3 flag. We compile the code as is, without

profile-guided optimization. All code is single-threaded.

We disable hyper-threading.

Our experiments assume that the JSON document

is in memory; we omit disk and network accesses. In
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Table 3: Hardware

Processor Frequency Microarchitecture Memory Compiler

Intel i7-6700 3.4 GHz Skylake (x64, 2015) DDR4 (2133 MT/s) GCC 7
Intel i3-8121U 2.2 GHz Cannonlake (x64, 2018) LPDDR4 (3200 MT/s) GCC 7

practice, JSON documents are frequently ingested from

the network. Yet current networking standards allow for

speeds exceeding 10 GB/s [7] and modern networking

hardware can allow network data to be read directly

into a cache line, so a high performance implementa-

tion of JSON scanning is desirable even for data com-

ing from the network. While we focus on speed, we also

expect that more efficient parsers reduce energy con-

sumption.

After reviewing several parsers, we selected RapidJ-

SON and sajson, two open-source C++ parsers, as ref-

erences (see Table 4). Palkar et al. describe RapidJSON

as the fastest traditional state-machine-based parser avail-

able [19]. In practice, we find that another C++ parser,

sajson, is faster. They are both mature and highly opti-

mized: they were created in 2011 and 2012 respectively.

The sajson parser can be used with either static or dy-

namic memory allocations: the static version is faster,

so we adopt it.

Counting our own parser (simdjson), all three parsers

can parse 64-bit floating-point numbers as well as in-

tegers. However, sajson only supports 32-bit integers

whereas both RapidJSON and simdjson support 64-bit

integers. RapidJSON represents overly large integers

as 64-bit floating-point numbers (in a lossy manner)

whereas both our parser (simdjson) and sajson reject

documents with integers that they cannot exactly rep-

resent.

RapidJSON can either normalize strings in a new

buffer or within the input bytes (insitu). We find that

the parsing speed is greater in insitu mode, so we present

these better numbers. In contrast, sajson only supports

insitu parsing. Our own parser does not modify the in-

put bytes: it has no insitu mode. All three parsers do

UTF-8 validation of the input.

We consider other open-source parsers but we find

that they are either slower than RapidJSON, or that

they failed to abide by the JSON specification (see

§ 4.5). For example, parsers like gason, jsmn and ultra-

json accept [0e+] as valid JSON. Parsers like fastjson

and ultrajson accept unescaped line breaks in strings.

Other parsers are tightly integrated into larger frame-

works, making it difficult to benchmark them fairly.

For methodological simplicity, we also do not consider

parsers written in Java or other languages.

RapidJSON has compile-time options to enable op-

timized code paths making use of SIMD optimizations:

these optimizations skip spaces between values or struc-

tural characters. However, we found both of these compile-

time macros (RAPIDJSON SSE2 and RAPIDJSON -

SSE42) to be systematically detrimental to performance

in our tests. Moreover, they are disabled by default in

the library. Thus we do not make use of these optimiza-

tions.

Other than RapidJSON, we find that none of the li-

braries under consideration make deliberate use of SIMD

instructions. However, we expect that all libraries ben-

efit of SIMD instructions in our tests: many functions

from the standard libraries are vectorized, and the com-

piler translates some conventional code to SIMD in-

structions (e.g., via autovectorization [17]).

We cannot directly compare with Mison since their

software is not available publicly [12]. However, the au-

thors of Mison reports speeds up to slightly over 2 GB/s

on a 3.5 GHz Intel Xeon Broadwell-EP (E5-1620 v3):

e.g., while parsing partially Twitter data. We know that

Mison does not attempt to validate the documents nor

to parse them entirely.

4.2 Datasets

Parsing speed is necessarily dependent on the content

of the JSON document. For a fair assessment, we chose

a wide range of documents. See Table 5 for detailed

statistics concerning the chosen files. In Table 6, we

present the number of bytes of both the original doc-

ument and the version without extraneous white-space

characters outside strings.

From the author of RapidJSON4, we acquired three

data files. We have canada.json which is a description

of the Canadian contour in GeoJSON: it contains many

numbers. We have citm catalog.json which is commonly

used benchmark file. Finally, we have twitter.json which

is the result of a search for the character one in Japanese

and Chinese using the Twitter API: it contains many

non-ASCII characters. From the author of sajson5, we

retrieved several more files: apache builds.json, github -

4 https://github.com/miloyip/nativejson-benchmark
5 https://github.com/chadaustin/sajson/tree/master/

testdata
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Table 4: Competitive parsers

Processor snapshot link

simdjson January 5th 2019 https://github.com/lemire/simdjson

RapidJSON version 1.1.0 https://github.com/Tencent/rapidjson

sajson September 20th 2018 https://github.com/chadaustin/sajson

events.json, instruments.json, mesh.json, mesh.pretty.json,

update-center.json.

We also generated number.json as a large array of

random floating-point numbers. We also created twit-

terescaped.json which is a minified version of the twit-

ter.json where all non-ASCII characters have been es-

caped.

Many of these documents require much number pars-

ing or much string normalization. We deliberately did

not consider small documents (smaller than 50 kB). The

task of parsing many tiny documents is outside our

scope.

4.3 Running Time Distribution

Most of the vector processing (with SIMD instructions)

occurs during stage 1. In Fig. 8, we present the distribu-

tion of cycles per stage, for each test file. About half the

CPU cycles per input byte (between 0.5 and 3 cycles)

are spent in stage 1. Thus at least half of the process-

ing time is directly related to SIMD instructions and

branchless processing.

Roughly a third of the CPU cycles are spent parsing

numbers in the files canada, marine jk, mesh, mesh.pretty

and numbers. In other files, the time spent parsing num-

bers is negligible.
The string parsing time is a sizeable cost in the twit-

terescaped file. In this file, all non-ASCII characters

have been escaped which makes string normalization

more difficult.

In the random file, UTF-8 validation is a significant

cost, but a relatively small cost in all other instances.

This file has a relatively high fraction of non-ASCII

characters (20%). In comparison, the twitter file has

only 3% of non-ASCII characters.

The running time of the parser depends on the char-

acteristics of the JSON document. It can be useful to

model the performance: e.g., an engineer could predict

the execution time and budget accordingly. For this

purpose, we used linear regression based on our dataset

of files. Our dataset is relatively small, but we expect

that it is large enough for a simple linear regression.

– Let F the number of floating-point numbers,

– S be the number of structural and semi-structural

elements and

– B the number of bytes.

With a high accuracy (R2 ≥ 0.99), we have the follow-

ing cost models:

– The stage 1 running time (in CPU cycles) is 1.8 ×
S + 0.62×B on Skylake and 1.9× S + 0.63×B on

Cannonlake.

– The stage 2 running time is 19 × F + 9.5 × S +

0.33×B on Skylake and 19× F + 9× S + 0.36×B

on Cannonlake.

– The total running time is 19×F+11×S+0.95×B on

Skylake and 19×F+11×S+0.98×B on Cannonlake.

The number of input bytes as a small coefficient (less

than 1 cycle per input byte) but its contribution to

the cost is still significant because there are many more

bytes than structural elements or floating-point num-

bers.

In our model, a floating-point number not only has

a direct cost, but also generates one pseudo-structural

character and comprises several bytes: thus each num-

ber costs dozens of cycles.

4.4 Fewer Instructions

The main benefit of SIMD instructions is to do more

work with fewer instructions. Thus we expect our parser

to user fewer instructions. We present in Table 7 the

number of instructions needed to parse various file using

our three competitive parsers.

On average, simdjson uses half as many instructions

as sajson and four times fewer than RapidJSON. Our

fastest competitor, sajson, uses between 1.7 and 3.3

more instructions. The files where our advantage over

sajson is relatively smallest are marine ik mesh.pretty

and twitterescaped. These files involve either much num-

ber parsing, or expensive string normalization.

4.5 Speed Comparison

We present raw parsing speeds in Fig. 9. In only a

few instances, sajson can slightly surpass 1 GB/s and

RapidJSON can slightly surpass 0.5 GB/s. On our Sky-

lake (3.4 GHz) processor, our parser (simdjson) can achieve
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Table 5: Datasets statistics. The last column (struct.) is the number of structural and pseudo-structural characters.

file integer float string non-ascii object array null true false struct.

apache builds 2 0 5289 0 884 3 0 2 1 12365
canada 46 111080 12 0 4 56045 0 0 0 334374
citm catalog 14392 0 26604 348 10937 10451 1263 0 0 135991
github events 149 0 1891 4 180 19 24 57 7 4657
gsoc-2018 0 0 34128 0 3793 0 0 0 0 75842
instruments 4935 0 6889 0 1012 194 431 17 109 27174
marine ik 130225 114950 38268 0 9680 28377 0 6 0 643013
mesh 40613 32400 11 0 3 3610 0 0 0 153275
mesh.pretty 40613 32400 11 0 3 3610 0 0 0 153275
numbers 0 10001 0 0 0 1 0 0 0 20004
random 5002 0 33005 103482 4001 1001 0 495 505 88018
twitterescaped 2108 1 18099 0 1264 1050 1946 345 2446 55264
twitter 2108 1 18099 95406 1264 1050 1946 345 2446 55264
update-center 0 0 27229 49 1896 1937 0 134 252 63420

Table 6: Datasets sizes: minified size omits white-space characters outside quotes.

file bytes (minified) bytes (original) ratio

apache builds 94653 127275 74%
canada 2251027 2251027 100%
citm catalog 500299 1727204 29%
github events 53329 65132 82%
gsoc-2018 3073766 3327831 92%
instruments 108313 220346 49%
marine ik 1834197 2983466 61%
mesh 650573 723597 90%
mesh.pretty 753399 1577353 48%
numbers 150121 150124 100%
random 461466 510476 90%
twitterescaped 562408 562408 100%
twitter 466906 631514 74%
update-center 533177 533178 100%
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Fig. 8: Time required in cycles per input byte to process our test files, timings are decomposed in the time needed

to execute various components of the parsing.
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Table 7: Instructions per byte required to parse and validate documents (Skylake).

file simdjson RapidJSON sajson
RapidJSON/ sajson/
simdjson simdjson

apache builds 5.3 28.2 9.5 5.3 1.8
canada 12.4 29.2 22.0 2.4 1.8
citm catalog 5.0 15.1 10.4 3.0 2.0
github events 4.7 28.7 9.5 6.1 2.0
gsoc-2018 3.2 29.7 10.4 9.3 3.3
instruments 5.9 22.6 12.3 3.8 2.1
marine ik 12.7 27.4 21.3 2.2 1.7
mesh 13.5 30.2 24.4 2.2 1.8
mesh.pretty 8.7 17.9 15.0 2.1 1.7
numbers 10.9 27.3 20.8 2.5 1.9
random 8.4 33.8 15.4 4.0 1.8
twitterescaped 8.7 29.6 14.4 3.4 1.7
twitter 5.2 24.8 11.0 4.8 2.1
update-center 5.9 35.2 11.5 6.0 1.9

average 7.9 27.1 14.9

geometric mean 3.7 2.0

Table 8: Time required in cycles per input byte to parse

and then select all distinct user.id from the parsed tree,

using the file twitter.

(a) Skylake

parser cycles/byte

simdjson 2.4
RapidJSON 10.0
sajson 4.8

(b) Cannonlake

parser cycles/byte

simdjson 3.6
RapidJSON 7.4
sajson 6.4

and even surpass 2 GB/s in five instances, and for gsoc-

2018, we reach 3 GB/s.

The purpose of parsing is to access the data con-

tained in the document. It would not be helpful to

quickly parse documents if we could not, later on, ac-

cess the parsed tree quickly. In Table 8, we present our

results while parsing the twitter document and find-

ing all unique user.id (SELECT DISTINCT “user.id”

FROM tweets), a query from Tahara et al. [21]. We re-

port the time in cycles per byte to fully parse and scan

the parsed tree. Our parser is again twice as fast as the

reference parsers.

In Table 9, we present the parsing speed in giga-

bytes per second (GB/s) for several different parsers.

In particular, we present results regarding RapidJSON

using both the default configuration and the faster ver-

sion that we use elsewhere (with insitu processing). In

several cases, insitu processing is faster (apache build,

gsoc-2018, twitter, etc.) up to a factor of two, while in

other cases, such as all files made mostly of numbers,

the difference is negligible. Compared with RapidJSON

without insitu string processing, our parser (simdjson)

can be more than five times faster. RapidJSON fur-

ther allows us to disable character encoding validation

or to use higher precision number parsing, we do not

report the results for these cases. For sajson, we use

both the default dynamic-memory allocation and the

faster version with static-memory allocation which we

use elsewhere. The dynamic-memory allocation leads to

a significant performance penalty, but we expect that it

makes the parser more conservative in its memory us-

age. For reference, we also include several other popular

C/C++ parsers even though we found them all to be

lacking regarding their validation: the Dropbox parser6,

fastjson7, gason8, ujson4c: a wrapper around the Ultra-

JSON library9, jsmn10, cJSON11, and jsoncpp12. In all

cases, we used the latest available version and we tried

to benchmark to get the best speed. Out of these other

parsers, the most competitive regarding speed is gason,

as it is close to the best performance of sajson.

6 https://github.com/dropbox/json11
7 https://github.com/mikeando/fastjson
8 https://github.com/vivkin/gason
9 https://github.com/esnme/ujson4c

10 https://github.com/zserge/jsmn
11 https://github.com/DaveGamble/cJSON
12 https://github.com/open-source-parsers/jsoncpp
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Fig. 9: Speed of the three parsers (simdjson, RapidJSON and sajson) while parsing our different files (in GB/s).

Table 9: Parsing speed in gigabytes per second (GB/s) for several different parsers (Skylake)
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apache builds 2.2 0.52 0.69 0.83 1.2 0.17 0.27 0.93 0.41 0.07 0.30 0.14
canada 1.0 0.51 0.50 0.59 0.80 0.07 0.20 0.91 0.47 0.01 0.08 0.04
citm catalog 2.5 0.83 0.88 0.85 1.1 0.24 0.37 1.2 0.71 0.21 0.38 0.18
github events 2.4 0.51 0.75 0.96 1.1 0.15 0.26 0.93 0.38 0.57 0.28 0.13
gsoc-2018 3.0 0.55 1.0 1.1 1.3 0.23 0.31 1.1 0.44 0.17 0.54 0.26
instruments 2.0 0.61 0.69 0.67 0.99 0.14 0.31 0.99 0.45 0.26 0.26 0.12
marine ik 0.92 0.45 0.46 0.51 0.68 0.07 0.20 0.76 0.40 0.18 0.08 0.04
mesh 0.92 0.45 0.44 0.51 0.69 0.09 0.18 0.72 0.40 0.05 0.07 0.03
mesh.pretty 1.4 0.73 0.72 0.67 1.00 0.16 0.31 1.0 0.71 0.10 0.14 0.07
numbers 1.1 0.53 0.53 0.57 0.83 0.09 0.22 0.83 0.48 0.56 0.08 0.03
random 1.4 0.40 0.50 0.44 0.82 0.10 0.22 0.82 0.29 0.03 0.19 0.08
twitter 2.2 0.51 0.71 0.70 0.97 0.14 0.26 0.85 0.42 0.28 0.34 0.13
twitterescaped 1.1 0.42 0.59 0.60 0.86 0.11 0.24 0.72 0.36 0.26 0.27 0.11
update-center 1.7 0.40 0.55 0.48 0.84 0.11 0.20 0.72 0.31 0.06 0.25 0.10

5 Conclusion and Future Work

Though the application of SIMD instructions for pars-

ing is not novel [5], our results suggest that they are

underutilized in popular JSON parsers. We expect that

many of our strategies could benefit existing JSON parsers

like RapidJSON. It may even be possible to integrate

the code of our parser (simdjson) directly into existing

libraries.

JSON is one of several popular data formats such as

Protocol Buffers, XML, YAML, MessagePack, BSON,

CSV, or CBOR. We expect that many of our ideas

would apply to other formats.

JSON documents are all text. Yet we frequently

need to embed binary content inside such documents.

The standard approach involves using base64 encod-

ing. Base64 data can be decoded quickly using SIMD

instructions [15]. Because number parsing from text is

expensive, it might be fruitful to store large arrays of

numbers in binary format using base64.

Intel has produced a new family of instruction sets

with wider vector registers and more powerful instruc-

tions (AVX-512). Our Cannonlake processor supports

these instructions, including the AVX512-VBMI exten-

sion, which is relevant to the byte processing required

for this work. Future research should assess the benefits

of AVX-512 instructions.

Many of our strategies are agnostic to the specific

architecture of the processor. Future research should try

to replicate our performance improvements with other

processor, such as those of the ARM or POWER fami-

lies.
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